

SMD

SECUNDÁRIA AO

TRATAMENTO ONCOLÓGICO

A síndrome mielodisplásica (SMD) é um grupo heterogêneo de distúrbios hematopoiéticos clonais, caracterizados por medula hipocelular ou hipercelular com morfologia e maturação prejudicadas e citopenias no sangue periférico, seguidas por comprometimento progressivo da capacidade de diferenciação das células-tronco mielodisplásicas e uma tendência a evoluir para leucemia mieloide aguda (LMA).

Síndrome mielodisplásica secundária à quimioterapia (SMD-t) é uma doença clonal com curso clínico mais agressivo que a SMD primária, associada ao tratamento prévio do câncer com uso de quimioterapia (TC) e ou radioterapia (RT).

Os esquemas quimioterápicos mais intensivos (com objetivos curativos) e os regimes de condicionamento associados aos transplantes de medula óssea têm aumentado a incidência de SMD-t nos últimos anos.

Embora a quantidade total de casos de SMD relacionados ao tratamento seja pequena, a preocupação com o mau prognóstico de SMD justifica.

A SMD relacionada ao tratamento câncer prévio é uma consequência grave a longo prazo dos tratamentos citotóxicos usados. A terapia tradicional contra o câncer produz extensos danos ao DNA que, por sua vez, inibem a proliferação e ativam vias de morte celular. A RT e a TC não se concentram apenas em células cancerígenas; portanto, mutações também podem ocorrer entre células normais. Um clone mieloide neoplásico pode ser criado quando os genes que regulam o crescimento e a diferenciação de células-tronco, bem como precursoras hematopoiéticas, são persistem e afetados.

A exposição a inibidores da topoisomerase II causa SMD-t precoce (comumente dentro de 1 a 3 anos) e causa mudanças genéticas equilibradas que geralmente incluem 11q23. Mas a exposição a agentes alquilantes começa mais tarde (de cinco a dez anos) e causa alterações cromossômicas desequilibradas que frequentemente incluem os cromossomos 5 e 7.

Os pesquisadores descobriram que os efeitos específicos e as anormalidades cromossômicas causadas pela radiação parecem ser semelhantes aos observados na exposição a agentes alquilantes.

Isso indica que a SMD pode ter um efeito sinérgico entre RT e TC. Foi demonstrado que, no tratamento do câncer, a combinação de RT e TC (simultânea ou sequencial) melhora os resultados terapêuticos em vários tipos de câncer. A toxicidade causada pelo tratamento pode ser aditiva. Como resultado, a terapia combinada pode aumentar o risco de SMD.

Cerca de 80% dos pacientes com SMD-t apresentam anormalidades citogenéticas, tais como, -5, del(5q), -7, del(7q),del(13q), del(17p) e -18. Também apresentam maior incidência de mutações no gene P53 e aumento da instabilidade microssatélite, o que predispõe à instabilidade genética.

Maior suscetibilidade a quebras na região do centrômero pode explicar as alterações genéticas observadas. Há duas vias bem descritas para a SMD-t após o uso desses agentes: a primeira está relacionada à del(7q) e -7, na qual ocorre mutação do gene RAS e hipermetilação da região promotora do P15 e a segunda envolve del(5q) e -5 em que pode aparecer mutação do gene P53.

O efeito leucemogênico da radiação ionizante leva à produção de espécies reativas de oxigênio, o que aumenta a frequência de quebras da fita dupla do DNA. Os agentes alquilantes causam quebras na cadeia dupla do DNA de uma maneira diferente. Essas quebras podem causar rearranjos cromossómicos, o que resulta em uma célula estaminal na medula óssea. O uso de agentes alquilantes e radiação ionizante aumenta a radiossensibilização tumoral. :40 Embora seja comum que danos no DNA induzidos por radiação possam alterar as células-tronco da medula óssea e, portanto, causar neoplasias mieloides, sugerimos que a radioterapia contemporânea usa métodos que limitam a dose ao tecido hematopoiético. Com a dose restrita reduz assim o risco de atingir o limiar citotóxico de dano ao DNA induzido por radiação que leva ao SMD-t.

Estudos retrospectivos apresentam incidência variando desde 1% de 12% de SMD/LMA secundária após uma mediana de seguimento de seis anos após TMO-A.

Tipos tumorais:

A análise por local do câncer indicou que pacientes com câncer de estômago, colorretal, fígado, mama, endométrio, próstata e rim após radioterapia tiveram um risco significativamente alto de desenvolver SMD. Por outro lado, a quimioterapia teve maior probabilidade de aumentar a incidência de SMD-t entre pacientes com câncer de pulmão, endométrio e colo do útero (Tabela 1).

Tabela 1. Sítios e/ou tipos de câncer associados a maior incidência de SMD-t.

Cólon	LMA	Pulmão	Tireoide	
Cabeça e pescoço	Mediastino	Pleura	Trombocitopenia essencial	
Estomago	Miocárdio	Próstata	Útero	
Fígado	Mieloma múltiplo	Renal	Mama	
Ginecológico	Mielofibrose	Retal	Endométrio	
linfoma não-Hodgkin	Ovário	Sarcoma		
linfoma de Hodgkin	na de Hodgkin Pênis			

Drogas:

Os agentes alquilantes podem causar deleções ou perda de todo o braço dos cromossomos 5 e 7. Os análogos de purina também foram associados ao desenvolvimento de SMD-t. O metotrexato não se qualifica mais como causa de SMD-t.

De uma maneira geral, as intervenções associadas ao desenvolvimento de SMD-t são:

- 1. Radioterapia:
- 2. TMO-A;
- 3. Azatioprina:
- 4. Uso de agentes imunomoduladores para micose fungóide;
- 5. Síndrome de Sézary;
- 6. Quimioterapicos listados na Tabela 2.

Tabela 2. Agentes associados ao desenvolvimento de SMD-t.

Anticorpo monoclonal	Agentes alquilantes	Esquemas de quimioterapia\ condicionamento	Inibidores da topoisomerase II	Análogo de Purina	Agente Citotóxico	Antimetabólico	Antraciclínicos
Rituximabe	Tiotepa	R-CHOP	Etoposideo	Fludarabina	Epirrubicina	Cladribina	Doxorrubicina
	Busulfan	Metil-CCNU	Doxorrubicina				Daunorrubicina
	Bendamustina	Dexa-BEAM			Mitoxantrona		
	Ciclofosfamida	CHOP					
	Melfalano	COPP					
	Cisplastina	ABVD					
	Bendamustina	BEACOPP					
	Clorambucil						

Tratamento:

Dentre as opções terapêuticas para o tratamento das SMD secundária à terapia, figuram:

- o suporte transfusional e o uso dos agentes hipometilantes para os casos que se apresentam com alterações citogenéticas relacionadas ao cromossomo.
- A lenalidomida é usada para diminuir a necessidade de transfusões de glóbulos vermelhos.
- A globulina antitimócito (ATG) atua suprimindo ou enfraquecendo o sistema imunológico.
- Azacitidina e decitabina são usadas para tratar síndromes mielodisplásicas, matando células que estão se dividindo rapidamente. Eles também ajudam os genes envolvidos no crescimento celular a funcionarem como deveriam. O tratamento com azacitidina e decitabina pode retardar a progressão das síndromes mielodisplásicas para leucemia mieloide aguda.
- Pacientes com síndrome mielodisplásica e alto número de blastos na medula óssea apresentam alto risco de leucemia aguda. Eles podem ser tratados com o mesmo regime de quimioterapia utilizado em pacientes com leucemia mieloide aguda.
- Quimioterapia com transplante de células-tronco

Conclusão:

As SMD- t têm um prognóstico ruim, com sobrevida média de apenas 8 meses e sobrevida em 5 anos inferior a 10%, e geralmente exibem achados citogenéticos de alto risco que frequentemente envolvem perdas dos cromossomos 5 e/ou 7. O transplante de medula óssea (TMO) parece representar o único regime potencialmente curativo em pacientes com diagnóstico de SMD-t.

Leitura recomendada:

https://www.thelancet.com/action/showPdf?pii=S2589-5370%2823%2900237-7

https://www.nature.com/articles/s41375-023-01864-6

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603069/

Dr. Helio Magarinos Torres Filho Diretor Médico CRM 52.47173-0

Dra Emilly Machado Relacionamento Médico CRM 52.76128-1

